
TROPICAL ALGEBRAIC GEOMETRY

THE STRUCTURE THEOREM

ISABEL LONGBOTTOM

Abstract. We develop the language and conceptual framework to state
the Structure Theorem for Tropical Algebraic Varieties. This includes
a background in field valuations and polyhedral geometry. Focusing on
examples to illustrate the geometric intuition behind various algebraic
definitions, we outline all aspects of the Structure Theorem except the
precise details of the weightings needed. We conclude with a broad
discussion of parts of the proof of the Structure Theorem.

1. Introduction

In algebraic geometry, the main objects of study are algebraic varieties.
These are the vanishing sets in the affine space kn of polynomial ideals in
the ring k[x1, . . . , xn] over some field k, usually algebraically closed. In trop-
ical algebraic geometry, however, we study tropical algebraic varieties. We
still work over an algebraically closed field k, but we now consider subvari-
eties of the algebraic torus (k×)n and ideals in the Laurent polynomial ring
k[x±1

1 , x±1
2 , . . . , x±1

n ]. Any ideal I in this Laurent polynomial ring defines a
vanishing set V (I) ⊂ (k×)n, and a tropical algebraic variety is the tropical-
isation of such a set, which is a collection of polyhedra in Rn. To define the
tropicalization, we will use a new kind of arithmetic, in which multiplication
is replaced by addition and addition is replaced by minima.

To define a tropical algebraic variety, we take a function which is the
minimum of finitely many affine pieces, and then look at the set of points in
the domain for which the function fails to be smooth. This is the tropical
hyperplane corresponding to some Laurent polynomial, which depends on
the piecewise-affine function we started with.

Our focus is the Structure Theorem for Tropical Algebraic Varieties. To
give an intuitive understanding of the statement of this theorem, consider
the following. Every tropical algebraic variety is a polyhedral complex (in-
formally, a collection of polyhedra, which are what you would expect except
that we allow them to be unbounded in this context), but the converse is
not true. To study the converse direction, one wishes to find a criterion to
determine whether a given polyhedral complex is a tropical variety. The
Structure Theorem gives a partial solution, in that it describes the prop-
erties of tropical varieties corresponding to irreducible subvarieties of the
algebraic torus.

Slightly more formally, the Structure Theorem states that the tropical-
isation of an irreducible subvariety of the torus has the same dimension
as the subvariety while satisfying balancing and connectedness conditions.
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Moreover, the coefficients of the affine equations describing the polyhedra
comprising the tropical variety lie in a specific subgroup of Rn.

We will need a strong base of theory from polyhedral geometry to state
the Structure Theorem, although since we are focusing on those definitions
relevant to our main goal, this background will lack breadth. Where the
reader desires more detail on an aspect of Section 4 in particular, [3] is
recommended as an excellent reference.

We will proceed mainly via definitions and examples. The material sum-
marised here is largely based on [2], and many of the notational choices come
from this source.

2. Basic Definitions: Tropical Arithmetic and Valuations

The tropical semiring (R∪{∞},⊕,�) has elements consisting of the real
numbers and one additional value ∞, representing positive infinity. The
arithmetic operations in the tropical semiring are

x� y := x+ y and x⊕ y := min(x, y).

These operations satisfy all the usual ring axioms, including distributivity of
� over ⊕, except that ⊕ does not have inverses. Therefore these operations
make the set R∪{∞} into a (commutative) semiring. We note that because
we are treating ∞ as positive infinity, we have

x⊕∞ = x and x�∞ =∞

for every x. The identity element for � is 0 and the identity element for ⊕
is ∞. We use exponent notation to denote repeated tropical multiplication,
so a3 = a� a� a. This is sometimes also denoted a�3.

This gives us a new notion of arithmetic on R, but we really want a new
notion of arithmetic on k. To this end, we define a valuation from k to the
tropical semiring.

Definition 2.1. A valuation on a field k is a map val : k → R ∪ {∞}
satisfying the following for all a, b ∈ k:

(1) val(ab) = val(a) + val(b) = val(a)� val(b),
(2) val(a+ b) ≥ min{val(a), val(b)} = val(a)⊕ val(b), and
(3) val(a) =∞ if and only if a = 0.

We often work with the restriction of a valuation to the multiplicative group
k×. Then its image is an additive subgroup of R, called the value group and
denoted Γval. A field with valuation is called a valued field.

The function that is constantly zero on k \ {0} and that evaluates to ∞
at 0 is a valuation on any field k. To avoid such trivialities, we will assume
from now on that 1 ∈ Γval.

Lemma 2.2. Let k be algebraically closed with valuation, and 1 ∈ Γval.
Then Γval is dense in R.

Proof. Since k is algebraically closed, a1/n ∈ k× for every a ∈ k×. Then by
property (1),

val(a1/n) =
1

n
val(a).
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Since 1 ∈ Γval, this means that Q ⊆ Γval, and because Q is dense in R, Γval

must also be dense in R. �

Example 2.3. (Pascal’s triangle in tropical arithmetic) The entries in Pas-
cal’s triangle come from the coefficients of the monomials in the expansion
of (x⊕ y)�n. First, note that in the tropical semiring

a⊕ a = min{a, a} = a

for any a. Therefore

(x⊕ y)�n = x�n ⊕ x�n−1 � y ⊕ . . .⊕ y�n

=

n⊕
i=0

x�i � y�(n−i)

Since 0 is the identity for �, all the coefficients in this expansion are 0 and
so Pascal’s triangle in the tropical semiring contains only zeroes.

In fact, we can simplify further: note that

x�i � y�j = ix+ jy ≥ min{(i+ j)x, (i+ j)y} = x�(i+j) ⊕ y�(i+j)

and so the cross terms in the expansion of (x⊕y)�n are unnecessary. There-
fore

(x⊕ y)�n = x�n ⊕ y�n.
Hence we could instead write Pascal’s triangle with all the external entries
(the first and last entries in each row) as 0, and the internal entries equal to
∞. We would usually use the version of Pascal’s triangle not containing ∞
since then the entries lie in the value group for any choice of valuation.

Lemma 2.4. If a, b ∈ k and val(a) 6= val(b) then

val(a+ b) = min{val(a), val(b)} = val(a)⊕ val(b).

This gives us a condition under which valuations distribute across addi-
tion.

Proof. We have the following by property (1). Since 12 = 1, val(1) = 0.
Then (−1)2 = 1, so val(−1) = 0 also. Hence val(−b) = val(b) for every
b ∈ k.

Now assume without loss of generality that val(b) > val(a). Then (2)
gives

val(a) ≥ min{val(a+ b), val(−b)} = min{val(a+ b), val(b)} = val(a+ b).

The last equality comes from the fact that we know val(b) > val(a), so it
cannot be true that min{val(a + b), val(b)} = val(b) since this would imply
val(a) ≥ val(b). Property (2) also gives

val(a+ b) ≥ min{val(a), val(b)} = val(a)

and so val(a+ b) = val(a) = min{val(a), val(b)} as required. �

The Laurent polynomial ring in n variables k[x±1 , . . . , x
±
n ] has a monomial

basis consisting of elements of the form
∏n

i=1 x
ai
i where each ai ∈ Z. A

Laurent polynomial in this ring can be evaluated at a point p ∈ (k×)n, the
algebraic torus of rank n.
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Definition 2.5. Let k be a field with valuation, and f ∈ k[x] a univariate
polynomial. To define the tropicalisation of f , denoted trop(f), we take the
valuation of each of the coefficients of f and interpret multiplication and
addition of terms in the polynomial f as the corresponding operations over
the tropical semiring.

If f ∈ k[x±1 , . . . , x
±
n ] is instead a Laurent polynomial in n variables, then

trop(f) is again given by taking valuations of the coefficients of f and in-
terpreting arithmetic over the tropical semiring. In this setting trop(f) is a
function defined on Rn as a subset of n-fold product of the tropical semiring.
Instead of trying to make sense of negative exponents and ∞, we exclude
points with at least one coordinate equal to ∞. Since Γn

val ⊆ Rn, we are not
losing anything by doing so. More explicitly, if f is given by

f =
∑
w∈Zn

cwx
w

then its tropicalisation is

trop(f)(u) = min
w∈Zn

{
val(cw) +

n∑
i=1

uiwi

}
= min

w∈Zn
{val(cw) + u ·w}

defined for u ∈ Rn. Note that if f happens to be a polynomial (has no
negative exponents) then trop(f) is well-defined on the n-fold product of
the tropical semiring.

Usually we would like k to be an algebraically closed field of characteristic
zero, but the definition still makes sense for an arbitrary field.

Example 2.6. Take k = Q, and let p be a prime. Consider the p-adic
valuation, which is defined for a ∈ Z by

val(a) = max{n ∈ N : pn | a}
and extended to Q by setting val(a/b) = val(a) − val(b). This valuation
measures divisibility by p. Then val(q) ∈ Z for every q ∈ Q×, and we
take val(0) = ∞. This valuation has value group Z, and for a polynomial
f ∈ Q[x],

f = anx
n + an−1x

n−1 + . . .+ a0

we get

trop(f) = val(an)� x�n ⊕ val(an−1)� x�(n−1) ⊕ . . .⊕ val(a0)

= min{val(an) + nx, val(an−1) + (n− 1)x, . . . , val(a0)}
In general, the tropicalisation of a polynomial in several variables is piecewise
affine, written as the minimum of a collection of affine functions correspond-
ing to the monomials of the original polynomial. The affine pieces are the
tropical monomials of trop(f).

For an explicit example, consider f(x) = 10x3 + 1
3x

2−6x+ 32
3 . Then with

respect to the 2-adic valuation,

trop(f) = 1� x�3 ⊕ 0� x�2 ⊕ 1� x⊕ 5.

Evaluating trop(f) at some point u in the tropical semiring, we have

trop(f)(u) = min{1 + 3x, 2x, 1 + x, 5}
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Definition 2.7. A tropical polynomial is a function defined on Rn, thought
of as a subset of the n-fold product of the tropical semiring, which is the
minimum of finitely many affine pieces. Such functions arise naturally as
the tropicalisation of a polynomial over some valued field. We think of such
polynomials as functions Rn → R.

Every tropical polynomial is continuous, piecewise affine, and concave.

Definition 2.8. For a tropical polynomial F in n variables, u ∈ Rn is a
tropical zero of F if the minimum of the tropical monomials of F is attained
at least twice at u. With this notion of a tropical zero, we define

V (F ) = {u ∈ Rn | u is a tropical zero of F}
for a tropical polynomial F .

Returning to example 2.6, we see that trop(f) has tropical zeroes {−1, 1, 4}.
These are given by intersections of the tropical monomials which lie in the
image of trop(f). Note not every intersection of two tropical monomials
corresponds to a zero.

Lemma 2.9. Tropicalisation is compatible with polynomial evaluation. That
is, if u = val(c) is the component-wise valuation of some c ∈ (k×)n and u is
not a tropical zero of trop(f), then val(f(c)) = trop(f)(u). Tropicalisation
is also compatible with multiplication, that is for f, g ∈ k[x±1 , . . . , x

±
n ],

trop(fg) = trop(f)� trop(g).

Proof. Since u is not a tropical zero, Lemma 2.4 gives the first equality.
Fix u ∈ Γn

val not a tropical zero of trop(f), trop(g) or trop(fg), and choose
c ∈ (k×)n with val(c) = u. Then

trop(fg)(u) = val((fg)(c)) = val(f(c))�val(g(c)) = trop(f)(u)�trop(g)(u)

Excluding the roots of the three tropical polynomials leaves a dense subset
of Γn

val on which trop(fg) = trop(f)� trop(g). Since Γval is dense in R, Γn
val

is also dense in Rn, and a dense subset of Γn
val is itself dense in Rn. Then

because tropical polynomials are continuous, trop(fg) = trop(f) � trop(g)
on Rn. �
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3. The Tropical Algebraic Variety

First we consider tropical hypersurfaces.

Definition 3.1. Let f ∈ k[x±1 , . . . , x
±
n ] be a Laurent polynomial, and let

X = V (f) be the hypersurface defined by f in (k×)n. Then the tropical
hypersurface corresponding to f is

trop(X) = {u ∈ Rn | u is a tropical zero of trop(f)} = V (trop(f)) ⊂ Rn.

This is precisely the locus in Rn where the piecewise affine function
trop(f) fails to be smooth.

A tropical variety is the tropicalisation of a classical variety over a field
with valuation. In our context we will start with a Laurent polynomial
ideal and its subvariety of the algebraic torus and define the corresponding
tropical variety in Rn.

Definition 3.2. Suppose I ⊆ k[x±1 , . . . , x
±
n ] is an ideal in the Laurent poly-

nomial ring, with X = V (I) its variety in the algebraic torus. The tropical
variety corresponding to I is the set of common zeroes of tropicalisations of
polynomials in I, that is

trop(V (I)) = {u ∈ Rn | u is a tropical zero of trop(f) ∀ f ∈ I}.

This set is also called the tropicalisation of X, and can be written

trop(X) =
⋂
f∈I

trop(V (f)) =
⋂
f∈I

V (trop(f))

as the intersection of the tropical hypersurfaces defined by polynomials in
I.

Remark 3.3. It can be shown that the set trop(X) depends only on
√
I, so

trop(X) does not depend on a choice of ideal I with V (I) = X. In fact, the
Fundamental Theorem of Tropical Algebraic Geometry tells us that trop(X)
is the closure of the set of coordinate-wise valuations of points in X. This
is why the notation for a tropical variety omits the ideal I.

Then a tropical variety in Rn is any set of the form trop(X) with X some
subvariety of the algebraic torus (k×)n, k a valued field.

Remark 3.4. When defining an affine variety, it is common to take

V (I) =
m⋂
i=1

V (fi)

where f1, . . . , fm is some generating set for I. In the context of tropical
varieties, we might be tempted to do something similar and define

trop(X) =
m⋂
i=1

trop(V (fi))

for a generating set f1, . . . , fm of the Laurent polynomial ideal I(X). In
general, this does not agree with Definition 3.2. Starting with a generating
set, one must usually pass to a larger subset of I and then consider the
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intersection of the tropical hypersurfaces corresponding to those polynomi-
als before the intersection is equal to trop(X). This is essentially because
tropicalisation does not commute with taking intersections.

Significantly, this also means that not every set of the form
m⋂
i=1

trop(V (fi)) =

m⋂
i=1

V (trop(fi))

is a tropical variety. Such sets are called tropical prevarieties. With the
definition of a polyhedral complex in section 4, we see that every tropical
variety is the support of some polyhedral complex but not every polyhedral
complex is a tropical variety.

Example 3.5. We consider a tropical hyperplane defined by a quadratic.
Consider the general tropical quadratic in 2 variables

p(x, y) = a� x�2 ⊕ b� x� y ⊕ c� y�2 ⊕ d� y ⊕ e⊕ f � x.
To avoid degeneracies, suppose the coefficients satisfy the following inequal-
ities

e+ b > f + d, f + c > d+ b, 4d > c, d+ a > f + b, 4f > a.

Then the function p : R2 → R is the lower envelope of 6 planes in R3. The
corresponding tropical quadratic is the projection onto R2 of the minimal
intersections of these planes. It consists of 3 line segments, 6 rays and 4
vertices. By ‘avoid degeneracies’, all we mean here is that there are 6 distinct
2-dimensional faces, and so on. One could imagine translating one of the
affine spaces defining a face in the positive z direction until its intersection
with the hyperplane was empty, and thus decreasing the number of faces.

(a) A plot of p(x, y) over the trop-
ical hyperplane it defines

(b) The tropical variety

4. Polyhedra, Polyhedral Fans and Polyhedral Complexes

The next section will discuss some of the notions from polyhedral geom-
etry that we will need to state the Structure Theorem. We will focus on
examples, and proofs will generally be omitted. A reader desiring further
details of any of these concepts should see [3].

Definition 4.1. A set S ⊆ Rn is called convex if for every u,v ∈ S and
0 ≤ λ ≤ 1 we have

λu + (1− λ)v ∈ S.
That is, the line segment joining u and v is contained in S.
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Definition 4.2. A polyhedron P is the intersection of finitely many closed
half-spaces in Rn, that is

P = {x ∈ Rn | Ax ≤ b}.
for a d×n matrix A and a vector b ∈ Rd. P consists of all points satisfying
a system of linear inequalities. Each such linear inequality ai · x ≤ bi for a
row vector ai in A defines a half-space, and P is the intersection of these.

A bounded polyhedron is called a polytope, and can be written as the
convex hull of a finite set U ⊂ Rn,

conv(U) =

{
r∑

i=1

λiui

∣∣∣∣∣ 0 ≤ λi ≤ 1,

r∑
i=1

λi = 1

}
Note that conv(U) is the smallest convex subset of Rn containing U .

Definition 4.3. Given a polyhedron P ⊆ Rn, the faces of P are defined by
linear functionals w : Rn → R. We can represent such a functional as an
inner product w(x) = w · x for a unique w ∈ Rn, so we can identify linear
functionals with points in Rn. Then the face of P corresponding to w is

facew(P ) = {x ∈ P | w · x ≤ w · y ∀ y ∈ P}.
This is the set of points in P where the value of the functional is minimised.
Such a set is called a face of P if it is nonempty.

A face of P that is not contained in any larger proper face is called a
facet.

Note that a face of a polyhedron is itself a polyhedron. It is defined by
the same linear inequalities as P , plus one additional inequality,

w · x ≤ c
where c is the constant value taken by w · x on facew(P ). This last linear
inequality is always an equality on facew(P ), and there are no points in P
satisfying w · x < c because of the minimality condition.

Definition 4.4. The affine span of a polyhedron P is the smallest affine
space containing P and is a translation of a linear subspace of Rn. The
dimension of P is defined to be the dimension of this linear subspace.

With this notion of dimension, we note that any facet of P has dimension
one less than the dimension of P , and if a face F1 of P is contained in some
other face F2 of P , F1 ( F2, then dim(F1) < dim(F2). The facets of P are
precisely those faces of dimension one less than the dimension of P .

Example 4.5. Consider the polyhedron P ⊆ R2 defined by−4 1
4 1
0 −1

x ≤

4
4
0


This is a 2-dimensional polytope which is the convex hull of the points
(0, 4), (1, 0) and (−1, 0) ∈ R2. These 3 points are the 0-dimensional faces
of P , while the line segments joining them are the 1-dimensional faces, and
also the facets of P . P is a 2-dimensional face of itself defined by the zero
functional, giving a total of 7 faces.
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We now turn our attention to an important special case of polyhedra.

Definition 4.6. A polyhedral cone C ⊆ Rn is a polyhedron defined by a
bounding vector b = 0 ∈ Rd. That is, a set of the form

C = {x ∈ Rn | Ax ≤ 0}
for a d × n matrix A. The faces of a cone (defined in the same way as for
any other polyhedron) have an alternative description as

facew(C) = {x ∈ C | A′x = 0}
where A′ is a d′ × n submatrix of A depending on w. We are effectively
choosing a subset of the linear inequalities defining C and forcing them to
be equalities.

A cone is an intersection of linear half-spaces which include the origin,
and the affine span of a cone is a linear subspace of Rn. The faces of a cone
are themselves cones. One-dimensional cones are rays from the origin.

Next we want to consider collections of polyhedra.

Definition 4.7. A polyhedral complex is a collection Σ of polyhedra, satis-
fying the following two conditions:

(i) if a polyhedron P is in Σ then so are all its faces;
(ii) for polyhedra P,Q ∈ Σ, their intersection P ∩Q is either empty, or

a face of both P and Q.

The polyhedra in a polyhedral complex are called cells. The facets of Σ
are those cells which are not faces of any larger cell. The facets of these
polyhedra are called ridges of Σ.

The set of facets of Σ defines Σ uniquely, since Σ precisely contains its
facets plus all the faces of its cells.

A polyhedral complex whose facets all have the same dimension d is pure
of dimension d.

An important special case of a polyhedral complex is a polyhedral fan.
This is a complex whose cells are all cones.

Example 4.8. Below are some examples and non-examples of polyhedral
complexes in R2. Only some of these are fans.

In (A) the two shaded grey regions are 2-dimensional facets, and the ray
which does not border either of these regions is a 1-dimensional facet. (B) is
not a polyhedral complex because the intersection of the bottom rectangular
region and either of the top two regions is not a face of the bottom region.
In (C), the 5 shaded grey regions are all 2-dimensional facets while the ray
that does not border any of them is a 1-dimensional facet. (D) has two
2-dimensional facets, shaded grey, and four 1-dimensional ridges, the 4 rays
depicted.

Definition 4.9. The support of a polyhedral complex Σ is its image in Rn,
which is the union of its cells. That is,

supp(Σ) =
⋃
P∈Σ

P = {x ∈ Rn | x ∈ P for some P ∈ Σ}.

Given two polyhedral complexes Σ1,Σ2, we can define their intersection
by taking the nonempty polyhedra P ∩Q with P ∈ Σ1, Q ∈ Σ2.
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(a) A fan with 3 facets, not all of
the same dimension

(b) Not a polyhedral complex

(c) A non-fan polyhedral complex
with 6 facets

(d) A pure dimension 2 fan

This intersects their supports, so

supp(Σ1 ∩ Σ2) = supp(Σ1) ∩ supp(Σ2).

Example 4.10. We can think of an octahedron in R3 as a polyhedral com-
plex in two different ways. If we want the octahedron to be hollow, then
the 8 classical faces of the octahedron will be the facets of the correspond-
ing polyhedral complex, while the 12 classical edges are the ridges. The
polyhedral complex will have a total of 8 + 12 + 6 = 26 cells.

Alternatively, we could build a polyhedral complex representing a solid
octahedron. This complex has one 3-dimensional facet, which contains all
the points in the octahedron, and 8 2-dimensional ridges which were the
facets in our last construction. It has a total of 27 cells. Because this
polyhedral complex has only one facet, it is really a polyhedron. In fact this
is a polytope because it is bounded.

We now define a useful notion of connectedness for polyhedral complexes.

Definition 4.11. Suppose Σ is a pure d-dimensional polyhedral complex
in Rn, some d ≤ n. We say that Σ is connected through codimension one if
there is a path along facets and ridges between any two facets of Σ. That
is, for any two d-dimensional polyhedra P, P ′ ∈ Σ, there is a chain

P = P0, P1, P2, . . . , Ps = P ′

with each Pi ∈ Σ a facet, and where for each 0 ≤ i ≤ s − 1, Pi ∩ Pi+1 is
a ridge of Σ (and hence a facet of both Pi and Pi+1). This is a path along
facets and ridges of Σ connecting P and P ′.
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Example 4.12. Any polyhedral complex which is connected through codi-
mension one is path-connected in the usual topological sense. For a pure 1-
dimensional complex, these notions are equivalent because any path-connected
complex is connected through dimension zero.

None of the three polyhedral complexes shown above is connected through
codimension one, but the example below is.

A fan, connected through codimension 1

There is one further basic concept we will need regarding polyhedral com-
plexes.

Definition 4.13. Let Γ be an additive subgroup of R. A Γ-rational polyhe-
dron is one whose defining matrix A has entries in Q, and whose bounding
vector b ∈ Γd has entries in Γ. That is,

P = {x ∈ Rn | Ax ≤ b}
with A ∈ Qd×n and b ∈ Γd.

A polyhedral complex is Γ-rational if all its constituent polyhedra are, or
equivalently if all its facets are Γ-rational.

If Γ = Q, we shorten Q-rational to just rational.

We will, of course, be interested in the case where Γ = Γval is the value
group.

Remark 4.14. The bounding vector of a cone is by definition the zero
vector, so a cone is {0}-rational if and only if it is Γ-rational for every
additive subgroup Γ ⊆ R. In particular, a cone is rational if and only if it is
Γ-rational for at least one such Γ.

The same applies to a fan, since all the cells of a fan are cones.

5. Weights and Balancing

Next we will meet and investigate weighted versions of pure-dimensional
polyhedral complexes, and define what it means for a weighted complex to
be balanced. A good place to start is with a balanced one-dimensional fan.

Definition 5.1. Let Σ be a pure d-dimensional polyhedral complex in Rn.
We give Σ the structure of a weighted complex by assigning a positive integer
weight m(P ) ∈ N to each facet P ∈ Σ. Recall that the facets are precisely
the d-dimensional cells since Σ is pure-dimensional.
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Definition 5.2. Suppose Σ ∈ Rn is a one-dimensional weighted rational
fan consisting of s rays from the origin, denoted P1, . . . , Ps. Since each ray
is rational, there are integer lattice points lying on each ray. Let ui be the
first such nonzero lattice point on the ray Pi ∈ Σ. Then the fan is balanced
if the zero-tension condition holds, that is

s∑
i=1

m(Pi) · ui = 0.

Next we want to extend this definition to a pure d-dimensional weighted
rational fan for d > 1, and then extend further to a general pure dimensional
polyhedral complex. Before we can do this we need one more definition.

Definition 5.3. The Minkowski sum of two polyhedra is their pointwise
vector sum, that is

P +Q = {x + y | x ∈ P and y ∈ Q}
for polyhedra P,Q ⊆ Rn. The Minkowski sum of two polyhedra is a poly-
hedron and the Minkowski sum of two cones is a cone.

We consider weighted rational fans in Rn of pure dimension d. Let Σ be
such a fan, with weightings m(P ) for the cones P ∈ Σ of dimension d. Fix
a cone Q ∈ Σ with dim(Q) = d − 1. We can define a 1-dimensional fan
associated to Q, and this fan will inherit weightings from the weightings of
Σ. It has rays corresponding to facets P ∈ Σ which have Q as a face.

Let L be the linear span of Q, so dim(L) = d − 1. We consider the set
of integer lattice points contained in L, LZ = L ∩ Zn. Since Q is a rational
cone, the linear equation defining L has rational coefficients, and so LZ is
a free abelian group of the same rank as L. Since L is a subspace of Rn,
NQ = Zn/LZ has a free abelian component of rank n− d+ 1, and possibly

also some additional torsion. Therefore NQ ⊗ R ∼= Rn−d+1 since tensoring
with R gets rid of the torsion components and we get one copy of R for each
copy of Z in NQ.

For each facet P ∈ Σ that has Q as a face, the set (P + L)/L can be
thought of as a one-dimensional cone in NQ ⊗ R in the following way. The
linear span of (P + L)/L is 1-dimensional, so it is spanned by a single
basis vector. Since P is closed under linear combinations with nonnegative
coefficients, (P + L)/L is also, and so the set (P + L)/L is a ray.

Since P,Q are both rational, there are integer lattice points lying on this
ray. Let uP be the minimal nonzero such lattice point. We can do this for
each facet P containing Q, and then consider∑

P)Q,dim(P )=d

m(P ) · uP .

If this sum is 0 — that is, the 1-dimensional rational fan at Q we constructed
is balanced — then we say that Σ is balanced at Q.

The fan Σ is balanced if it is balanced at all its ridges, or equivalently if
it is balanced at all its (d− 1)-dimensional cones.

More informally, what we are doing in the above construction is finding
the line through the affine span of P that is perpendicular to Q, and taking
uP to be the displacement from Q of the integer lattice point on this line
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which lies on the same side of Q as P and is closest to Q. This is sometimes
called an inward normal vector for Q in P , since it is normal to Q and
directed into P . There is a unique line perpendicular to Q in the affine span
of P because dim(P ) = dim(Q) + 1.

Example 5.4. Consider the following two rational fans in R2. Given a
ridge and its adjacent facets, we derive a 1-dimensional fan around that
ridge consisting of inward normal vectors (vectors perpendicular to the ridge,
pointing into a given adjacent facet). For the fan to be balanced, each
of these derived 1-dimensional fans must be balanced with the inherited
weightings. Hence (A) cannot be balanced, since the 1-dimensional fan we
get at either of the lower 1-cells has only a single ray.

The 1-dimensional fan derived from the second example at each ridge
consists of two rays pointing in precisely opposite directions, represented
by a lattice point and its negation. Therefore each 1-dimensional fan is
balanced if and only if the two adjacent 2-cells are weighted equally. Thus
(B) will be balanced when all its 2-cells have the same weight.

(a) Cannot be balanced (b) Balanced as long as the 2-cells
are all weighted the same

To extend this definition to apply to arbitrary polyhedral complexes, we
use a similar construction to get a fan at Q for every ridge Q ∈ Σ of a
pure-dimensional polyhedral complex. This time the fan we derive need not
be 1-dimensional.

Definition 5.5. Let Σ be a polyhedral complex in Rn. For a cell Q ∈ Σ,
the star of Q is a fan in Rn whose cones are indexed by the cells in Σ
which contain Q as a face. For each such cell P with Q ( P , the cone
corresponding to P in this fan is

P = {λ(x− y) | λ ≥ 0,x ∈ P,y ∈ Q}.
This is a cone because it is the positive hull of all points of the form x− y
for x ∈ P,y ∈ Q.

Then the star of Q in Σ is

starΣ(Q) = {P | P ∈ Σ, P ∩Q = Q}
This is generally not a pure-dimensional fan.

At first glance this may not look like it defines a polyhedral complex,
because it is not clear that starΣ(Q) contains all the faces of its cells. It is
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a polyhedral complex, basically because given a cone P ∈ starΣ(Q), each of
its faces is given by P ′ for some face P ′ of P which also contains Q.

Example 5.6. The cone P has the same dimension as P because the linear
subspace of Rn spanned by the cone is a translation of the affine span of P .

In the special case where Q is a facet of Σ, the only cell of Σ containing
Q is Q itself, and so starΣ(Q) has one facet of the same dimension as Q.
Hence starΣ(Q) is essentially a polyhedral cone. Technically, starΣ(Q) is
a set containing this polyhedral cone and all its faces, but morally we can
identify the fan with its single facet.

If Q is a ridge of Σ, then the only cells of Σ containing Q are Q itself,
and some facets of Σ. If Σ happens to be pure-dimensional, these facets
all have the same dimension, and so the cones of starΣ(Q) are all the same
dimension, except the cone corresponding to Q itself. This cone is not a
facet of starΣ(Q) because it is a face of all the others. Therefore starΣ(Q)
is also pure-dimensional.

All the stars of a Γ-rational polyhedral complex are also Γ-rational.

Definition 5.7. Let Σ be a weighted Γval-rational polyhedral complex that
is pure of dimension d, and Q ∈ Σ be any ridge. The facets of starΣ(Q) are
indexed by the facets of Σ which contain Q as a face, so starΣ(Q) inherits a
weighting function. The complex Σ is balanced if for every ridge Q, starΣ(Q)
is balanced under the inherited weights.

Remark 5.8. We only defined what it means for a rational pure-dimensional
fan to be balanced, so for this definition to make sense, we need starΣ(Q)
to be rational for every ridge Q. We know that starΣ(Q) is Γval-rational
because Σ is, and then because this is a fan, it must also be rational.

Example 5.9. To get some geometric intuition for starΣ(Q), consider the
following. Let P ∈ Σ have Q as a face, so that P is a cone in starΣ(Q). Then
to form the cone P , we take the union of all the sets obtained by translating
P so that one of the points in Q lies at the origin. Then P consists of all
positive scalar multiples of points in this union.

In this sense, P is the collection of rays parametrised by the gradients of
displacement vectors from Q to P .

As an explicit example, consider the complex Σ on the next page with 2
facets, P1 and P2, and 6 ridges. The fans starΣ(Qi) for i = 1, 2, 3 are also
depicted.

In the following description, the qualifiers ‘pure-dimensional’ and ‘weighted’
have been omitted because they apply everywhere that makes sense.

To define what it means for a Γ-rational complex to be balanced, we
first defined what it means for a 1-dimensional rational fan to be balanced,
using the zero-tension condition. Given a d-dimensional rational fan, we
can derive a 1-dimensional rational fan at each ridge by taking the inward
normal vectors with respect to adjacent facets, and we already know what it
means for this derived fan to be balanced. The d-dimensional fan is balanced
if the derived 1-dimensional fan at each ridge is balanced. Then, given a
Γ-rational complex Σ, we can derive a d-dimensional rational fan at each
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Q3

Q2

Q1

P2

P1

(a) The polyhedral complex Σ,
with some faces labelled

(b) The star at Q3 in Σ, with one
2-dimensional facet corresponding
to P2

(c) The star at Q2 in Σ, with one
2-dimensional facet corresponding
to P1

(d) The star at Q1 in Σ, with two
2-dimensional facets

ridge by taking the star. The complex Σ is balanced if the star at each ridge
is balanced.

To check whether a Γ-rational complex is balanced, we first compute the
star at each ridge. For each star, we then compute the derived 1-dimensional
fan at each ridge of the star. The star itself is pure of the same dimension
as Σ, so its ridges have the same dimension as the ridges of Σ. If all the
1-dimensional rational fans derived in this way are balanced, then Σ is bal-
anced.

6. The Structure Theorem

At this juncture we can state the precise form of the structure theorem.
The remainder of this section will be dedicated to giving an overview of
parts of the proof and discussing the various properties in the statement
of the structure theorem. We note for motivation that every tropical al-
gebraic variety is the support of a polyhedral complex, but the converse is
not true. We would like to have a general criterion which can be used to
determine whether for a given polyhedral complex, there is some tropical
variety equal to its support. The structure theorem gives a partial solution,
in that it describes the properties of a polyhedral complex whose support is
the tropicalisation of an irreducible subvariety of the torus.

Theorem 6.1. (The Structure Theorem) Let X be an irreducible subvari-
ety in (k×)n of dimension d, over an algebraically closed valued field. Then
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trop(X) is the support of a balanced Γval-rational polyhedral complex that is
pure of dimension d. This complex is moreover connected through codimen-
sion one.

Morally, this theorem tells us which polyhedral complexes are tropical
varieties. The reader is encouraged to verify these properties on Example
3.5.

We note that whether a polyhedral complex is balanced depends on the
weighting function, and the precise nature of the weighting which balances
this complex is not given in the theorem. This is for several reasons. Per-
haps most importantly, not every polyhedral complex has a weighting which
balances it, so the theorem asserts the existence of a balanced weighting. We
will not discuss the details of this weighting function or prove that the com-
plex is balanced by it.

Example 6.2. Consider a 1-dimensional fan in R2 with rays represented
by (1, 0) and (0, 1). There is no positive integer weighting on this complex
that balances it because the integer lattice points are linearly independent.

Lemma 6.3. For an irreducible variety X ⊂ (k×)n, trop(X) is the support
of a Γval-rational polyhedral complex.

Proof. We will use the fact that any tropical variety can be written as the
intersection of finitely many tropical hypersurfaces. The proof of this uses
tropical bases; for details see Section 2.6 of [2].

A tropical hypersurface is the support of a Γval-rational polyhedral com-
plex because for a single Laurent polynomial f , trop(f) is the minimum
of finitely many affine pieces, with coefficients in the value group. Tak-
ing the intersection of two polyhedral complexes intersects their supports,
so the intersection of all the polyhedral complexes corresponding to these
hypersurfaces has support equal to trop(X).

The intersection of two Γval-rational polyhedra is Γval-rational, so the in-
tersection of these tropical hypersurfaces gives the desired polyhedral com-
plex. �

For a fixed subvariety X of the torus, denote a polyhedral complex ob-
tained as in the proof of this lemma by ΣX .

We will not discuss the proof of connectedness through codimension one
in much depth. It can be shown by induction on the dimension d. The result
for the d = 1 case is nontrivial. When d = 1 the polyhedral complex is a
graph in Rn, so it is connected through codimension one if and only if it is
connected; one therefore need only show that trop(X) is connected as a set,
so this result does not depend in any way on ΣX .

Remark 6.4. This connectedness result is largely important for computa-
tion of tropical varieties. Given a subvariety X of the torus, we can define
a graph whose vertices are the facets (d-dimensional cells) of trop(X), and
two vertices are connected by an edge when their corresponding facets share
a common ridge. This graph is connected precisely when trop(X) is con-
nected through codimension one, since a path between two vertices in the
graph corresponds to a facet-ridge path between the corresponding facets in
trop(X). There are computational methods which, starting with one vertex
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in this graph, allow adjacent vertices to be identified. The graph being con-
nected makes this method effective, since we do not require multiple starting
vertices in different connected components.

So far we have not addressed the dimension of ΣX . The proof that ΣX

is pure of dimension d relies on the fact that for any polyhedral complex
structure on trop(X), the star of a cell is itself a tropical variety. It also
uses the fact that any subvariety X of the torus with trop(X) finite must
consist of finitely many points in the torus. See Section 3.3 of [2] for details.

Remark 6.5. The structure theorem tells us that every tropical variety
trop(X) for irreducible X is the support of a balanced weighted Γval-rational
pure-dimensional polyhedral complex. It is natural to wonder whether the
converse holds — given such a polyhedral complex, is its support always a
tropical variety? In general, this is not the case. However, this is a complete
classification for hypersurfaces.

Theorem 6.6. Let Σ be a balanced weighted Γval-rational polyhedral complex
in Rn that is pure of dimension n − 1. Then there is a tropical polynomial
F whose coefficients lie in Γval with V (F ) = Σ. By choosing a Laurent
polynomial f ∈ k[x±1 , . . . , x

±
n ] s.t. trop(f) = F , we see that Σ = trop(V (f))

and so supp(Σ) is a tropical variety.
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